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Optimizing Forecast Accuracy Does Not Optimize
Fairness

Definition of Fairness: the absence of any prejudice or favoritism
toward an individual or group based on their inherent or acquired
characteristics, an unfair algorithm is one whose decisions are
skewed toward a particular group of people (Mehrabi et al., 2021)

Forecasting with fairness

Training the algorithms for the best forecast accuracy may lead to
fairness issues (Loukina et al., 2019)

Enrollment forecasting

Forecast at the department, college, and university level for
gender/race/...

Forecasts are used to plan scholarships, budgets, tuition, etc.
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Data Availability Can Change Fairness

Data aggregation changes fairness metrics

Different methods of aggregation would lead to different results
Simpson’s paradox
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Literature Review

Fairness metrics at group level
Group fairness notions for binary outcomes in machine learning (Fu
et al., 2020)

Generalized form for conditional disparity:
P(x|a = a, z = z) = P(x|a = a′, z = z) (Ritov et al., 2015)

Social good metrics
“Presenting both a forecast of a phenomenon and its accuracy
alongside the FSG metrics is important” (Rostami-Tabar et al.,
2022)

Choosing aggregation level for hierarchical forecasting
Based on properties & nature of data (e.g., aggregate
neighborhoods by their locations (Humeau et al., 2013))

Based on other metrics or similarity (e.g., hierarchical agglomerative
clustering based on Gower’s distance (Goehry et al., 2017)

Forecast accuracy is improved when defining hierarchical structure
based on similarity (Quilumba et al., 2015)
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Contribution

Fairness metrics for time-series data

Choosing aggregation levels based on fairness (sequential
aggregation)

How does choosing aggregation levels based on fairness affect
forecast accuracy?
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Data

Annual undergraduate student enrollment data from the University of
Cailfornia (UC) Davis from 2010 to 2019

University of California, Disaggregated Data (2021)
(https://www.universityofcalifornia.edu/about-us/
information-center/disaggregated-data)

Only contains information at university level (missing college level
and department level).

We choose three attributes: race/ethnicity, gender, first generation
status

Race/ethnicity: 73 races, categorized into 7 broad categories

Gender: male/female

First generation status: yes/no

292 time series at the most disaggregated level
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Measuring Fairness without Selection Bias

1 Define pseudo-Boolean conditional parity to measure fairness
between Xi and Xj for 1 ≤ i < j ≤ N based on

f(xi,xj |ϵ)(y) =

n∑
k=1

ckyk +
∑

1≤k<l≤n

cklykyl, (1)

where yk = hij(ϵk) =

{
1 if

∣∣P (Ak | Xi)− P (Ak | Xj)
∣∣ ≤ ϵk

0 otherwise

(2)
y = (y1, . . . , yn) ∈ Bn and cS ∈ R, S ⊆ V, V = [n].

2 Define total fairness: average f(y) of all pairs

τ =

∑
1≤i<j≤N f(xi,xj |ϵ)(y)(

N
2

) (3)

where f(xi,xj |ϵ)(y) as defined in Equation (1), with cS = 1
|S| .
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Sequential Aggregation

3 Consider wij the weight of the edge between elements of pairs,
which is a linear combination of both fairness fij and similarity gij
based on Euclidean distance and correlation

wij = αfij + (1− α)gij , (4)

4 Solve the perfect matching problem to find optimal pairs of time
series to aggregate

max
∑

v1,v2
wv1v2xv1v2

subject to∑
v1∈V1

xv1v2 = 1∑
v2∈V2

xv1v2 = 1

xv1v2 ∈ {0, 1},

(5)

5 Repeat the process until we get the desired level of fairness
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Race Aggregation

Standard Aggregation: based on common sense/characteristics
7 broad categories

Black: Caribbean, African...

Asian: Chinese, Japanese, Korean...

Sequential Aggregation: flexible and numerous ways to
aggregate race

Keep aggregating until we get 9 broad categories

Select multiple sets of parameters to generate different aggregation
results
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Example of Sequential Aggregation

Label all races as 1, 2, 3,...,73, and set ϵ = 0.01, α = 0.5 for sequential
aggregation

Standard Seq Agg

Group 1 1 - 5 66, 45, 43, 11, 38, 14, 65, 1

Group 2 6 72, 29, 57, 17, 67, 39, 9, 2

Group 3 7 - 27 26, 13, 47, 12, 51, 46, 62, 3

Group 4 28 - 33 58, 36, 56, 16, 20, 6, 61, 4

Group 5 34 - 40 34, 32, 68, 27, 60, 35, 52, 5

Group 6 41 - 71 37, 24, 42, 10, 18, 53, 31, 44, 7

Group 7 72, 73 48, 30, 41, 23, 59, 21, 28, 8

Group 8 69, 63, 71, 18, 70, 25, 40, 15

Group 9 64, 50, 49, 22, 54, 33, 55, 19
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Sequential Aggregation Specifications

Aggregation Outcome

ϵ α

Sequential Aggregation 0.01 0.5

Sequential Aggregation 0.05 0.5

Sequential Aggregation 0.1 0.5

1 α: α = 0.5 represents the same weight on fairness as on similarity

2 ϵ: higher ϵ represents greater difference are allowed between groups
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Hierarchical Forecasting with Complete Information

Forecast number of students enrolled in 2019 based on data from
2010 to 2018 using simple exponential smoothing

Assume data is available at every level, and the forecast is
performed for each level
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Forecast Accuracy of Fairness at Time t+ 1

Use simple exponential smoothing to forecast ˆfairnesst+1 based on
historical fairness

f(xi,xj |ϵ)(y) =

n∑
k=1

1yk +
∑

1≤k<l≤n

0ykyl

τ =

∑
1≤i<j≤N f(xi,xj |ϵ)(y)(

N
2

)
ϵ Aggregation In-sample τ Forecasted τ̂ |τ̂ − τ |

Level 4 (first-generation status)

Standard 0.231 0.137 0.094

0.01 Seq Agg 0.281 0.281 0.000

0.05 Seq Agg 0.281 0.281 0.000

0.1 Seq Agg 0.288 0.287 0.001
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Forecast Accuracy of Fairness at Time t+ 1

ϵ Aggregation In-sample τ Forecasted τ̂ |τ̂ − τ |
Level 3 (gender)

Standard 0.810 0.477 0.333

0.01 Seq Agg 1.000 1.000 0.000

0.05 Seq Agg 1.000 0.944 0.056

0.1 Seq Agg 1.000 0.944 0.056

Level 2 (race)

Standard 0.333 0.194 0.139

0.01 Seq Agg 0.583 0.583 0.000

0.05 Seq Agg 0.588 0.528 0.060

0.1 Seq Agg 0.611 0.611 0.000
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Forecast Accuracy of Enrollment Counts at Time t+ 1

AvgMASE = 1
N

∣∣ ϵ̂2i,t
1
T

∑T
t =2|yt−yt−1|

∣∣,
where ϵ̂2i,t is Mean Squared Error

Average Mean Absolute Scaled Error

ϵ Aggregation Level 4 Level 3 Level 2

Standard 0.93 0.56 0.48

0.01 Seq Agg 0.83 0.61 0.67

0.05 Seq Agg 0.75 0.58 0.53

0.10 Seq Agg 0.75 0.50 0.38
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Top-down Forecasting without Level 4 Data

Assume the race information and the disaggregated gender information
are available, while only the proportion pJ of first-generation
status in the total counts is known.

Average Historical Proportions (AHP): pJ = 1
T

∑T
t=1

yJ,t
yt

proportions of the historical averages (PHA):
pJ =

∑T
t=1

yJ,t
T /

∑T
t=1

yt
T
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Forecast Accuracy of Fairness at Time t+ 1

ˆfairnesst+1 = f( ˆforecastt+1)

Only included results from AHP since AHP and PHA provides almost
the same results regarding accuracy of forecasted fairness.

ϵ Aggregation In-sample τ Forecasted τ̂ |τ̂ − τ |
Level 4 (first-generation status)

Standard 0.231 0.000 0.231

0.01 Seq Agg 0.281 0.000 0.281

0.05 Seq Agg 0.281 0.000 0.281

0.1 Seq Agg 0.288 0.000 0.288
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Forecast Accuracy of Enrollment Counts at Time t+ 1

Average Mean Absolute Scaled Error

Level 4 (first-generation status)

ϵ Aggregation AHP PHA

Standard 5.30 5.30

0.01 Seq Agg 4.05 4.04

0.05 Seq Agg 5.03 5.03

0.1 Seq Agg 4.32 4.32
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Conclusions

Sequential aggregation can achieve similar or even better forecast
accuracy

Sequential aggregation performs comparatively well at the levels
with information loss

Sequential aggregation achieves high forecast accuracy of fairness
with complete information
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Future Work

Explore the theoretical relationships between sequential
aggregation and hierarchical forecasting using similarity

Apply methodology to more sensitive data, such as criminal justice
of recidivism studies
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Thank you! Questions or Comments?
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Top-Down Forecasting without Level 3 and Level 4 Data

Assume the race information is available, while only the proportions
of first-generation status pJ and gender pI in the total counts
are known.
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Forecast Accuracy of Fairness at Time t+ 1

ϵ Aggregation In-sample τ Forecasted τ̂ |τ̂ − τ |
Level 4 (first-generation status)

Standard 0.231 0.000 0.231

0.01 Seq Agg 0.281 0.000 0.281

0.05 Seq Agg 0.281 0.000 0.281

0.1 Seq Agg 0.288 0.000 0.287

Level 3 (gender)

Standard 0.810 0.143 0.667

0.01 Seq Agg 1.000 0.028 0.972

0.05 Seq Agg 1.000 0.222 0.778

0.1 Seq Agg 1.000 0.028 0.972
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Forecast Accuracy of Enrollment Counts at Time t+ 1

Average Mean Absolute Scaled Error

Level 4 (first-generation status)

ϵ Aggregation AHP PHA

Standard 5.59 5.57

0.01 Seq Agg 4.28 4.26

0.05 Seq Agg 5.21 5.19

0.1 Seq Agg 4.45 4.44

Level 3 (gender)

Standard 1.82 1.78

0.01 Seq Agg 1.51 1.44

0.05 Seq Agg 1.34 1.28

0.1 Seq Agg 1.50 1.42
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